

Biotribology Investigation of Chocolate

Introduction

A selection of chocolate samples produced by Cadburys were supplied to PCS Instrument for analysis using a bio-tribology technique. This shows the lubrication regime of the chocolate and how it is controlled by the constituents within the chocolate.

Method

The chocolate test samples where heated in a oven at 60 C for over 1 hour until completely melted, then added to the pre-heated test chamber of the MTM2. The temperature within the test chamber was stabilised to 40 °C before the test began, with ball and disc rotating to circulate the molten chocolate.

A PDMS ball and a PDMS disc were used as the test samples. These have a hardness of 50 duro.

The ball and disc are loaded together with a force of 3 N. A slide/roll ratio is set at 1, and friction is measured over a range of speeds from 1 to 500 mm/s, with ascending speed.

Two samples have been tested, these have the labels:

- CDM UK
- CDM IRE
- SMP
- FCMP ING

The FCMP ING was not liquid at 40 °C, so the test was repeated at a higher temperature of 50 °C.

Results

The results of the measured friction are shown below, and plotted against the entrainment speed.

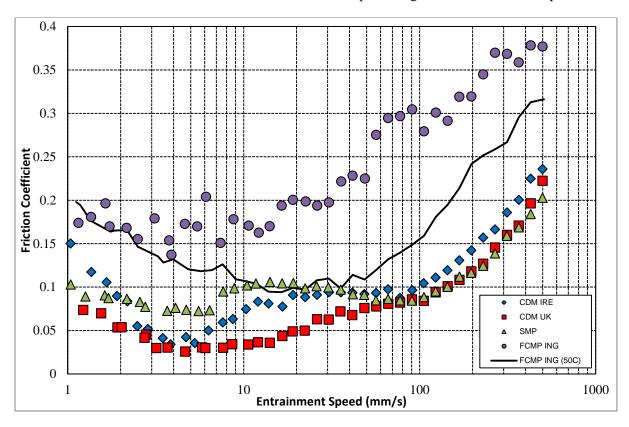


Figure 1: Friction Coefficient against entrainment speed for two CDM samples, at 100 % SRR, 3N, and PDMS-on-PDMS sample.

Discussion

The results shown in Figure 1 show part of a iso-viscous elastic stribeck curve. Between the speeds of 1 and 4 mm/s, the contact is in the mixed lubrication regime. Above 4 mm/s the contact is in the hydrodynamic regime, where the measured friction is controlled by the viscosity of the sample.

The CDM IRE sample shows a slightly higher friction coefficient throughout the hydrodynamic region of the curve, compared to the CDM UK and SMP samples, suggesting a higher viscosity.

The FCMP ING sample was not melted at the test temperature of 40 °C, and gave variable results, probably due to the passage of solid particles through the contact. The test was repeated at 50 °C, where the FCMP ING sample was liquid, the results were then more repeatable.

The sliding speed within the mouth is likely to be in the range of 1 to 20 mm/s. In this speed range (at 40 °C), the chocolate samples are undergoing a transition from the mixed to the hydrodynamic regime. The temperature, contact pressures and surface roughness are thus critical to understand the mouth-feel in this regime, and warrants further investigation and improvements to the method used here.