Category:
USV
Effect of Oil Rheology and Chemistry on Journal-bearing Friction and Wear
Legislation and market pressures are calling for increased engine power, reduced engine size, and improved fuel consumption. The use of low-viscosity lubricants is considered as a means to enhance fuel economy by reducing viscous friction, particularly in engine bearings. Journal bearings mostly operate under hydrodynamic lubrication with a thin film of oil separating the journal and bearing shell. There are, however, certain conditions, especially under high load or low speed, when the film thickness will be low enough to allow boundary lubrication to occur. In this study, the effect of lubricants with different viscosities, different types of viscosity modifiers, different additives, different types of dispersants, and different lubricant formulations have been studied under hydrodynamic and boundary lubrication regimes. For hydrodynamic conditions, a high-temperature high-shear viscometer, meeting the requirements of ASTM D4741 was used to measure viscosity at 106 s−1. In addition, a new ultra high-shear viscometer, from PCS Instruments, was used to measure viscosity at shear rates near to 107 s−1. Bearing weight loss and load bearing capacity were measured on a rig developed in-house using a specially designed half-bearing shell loaded against a rotating journal. A PCS journal-bearing rig was used to measure the bearing friction under transient load.