Category: MTM

Soft Lubrication of Model Hydrocolloids

Many food products are highly structured, complex hydrocolloids that are characterized by either a gel-like or shear thinning behaviour and are thus strongly non-Newtonian systems. Their sensory perception during use is dependent on their behaviour in very thin film conditions at high shear rates. In order to better understand their behaviour in thin films, we have formulated two kinds of solution which are typically present in real systems. We examine the lubricating properties (i.e. tribology) of thin films of structured and non-structured fluids between a hard and soft surface (‘soft-EHL’ lubrication), when the film thickness is of a similar size to the microstructural elements. The present work involves relating the tribology of both shear thinning polymer solutions and swollen microgel suspensions to their rheological and microstructural properties in thin films and at high shear rates in the boundary, mixed and fluid film lubrication regimes.

We show that the polymer solutions are typically entrained into rubbing contacts to form mixed fluid/boundary lubricating films while model yield stress fluids generate only boundary lubricating films. Soft-EHL theory satisfactorily predicts friction measurements at high entrainment speeds in full film lubrication. The microgels are found to form a confined film which minimizes contact between the surfaces, causing a lowering of the friction coefficient in the boundary-regime, while the friction in the mixed-regime is also dependent on the high-shear viscosity.


Keywords: Tribology, Lubrication, Soft contacts, Isoviscous-elastic, Carbopol