Fuels

PCS' instruments are at the forefront of fuels testing. With the range of equipment PCS offers, users can run internationally recognised standard tests (including ASTM, ISO and more) on both diesel fuels and jet fuels.

PCS Instruments offers a range of equipment for fuel testing requirements. At the forefront of this range are the HFRR and the ABS, both of which can perform internationally recognised standard tests.

The High Frequency Reciprocating Rig (HFRR) is a reciprocating friction and wear test system which provides a fast, repeatable assessment of the performance of fuels and lubricants. It is particularly suitable for wear testing relatively poor lubricants such as diesel fuels and for boundary friction measurements of engine oils, greases and other compounds. It has become the industry standard test for diesel fuel lubricity and conforms to ASTM D6079, ASTM D7688, CEC F-06-A, ISO 12156, EN 590, JPI-5S-50, and IP 450.

The Automated BOCLE System (ABS) is a Ball-on-Cylinder wear test system which provides a fast, repeatable assessment of the performance of jet fuels that fully conforms to the ASTM D5001 test method for “Measurement of Lubricity of Aviation Turbine Fuels by the Ball-on-Cylinder Lubricity Evaluator”.

Fuels industry facts:

  • Crude oil and natural gas liquid production exceeded 4500 million tonnes in 2019
  • The United States has increased the amount of crude oil and natural gas liquids it exports by 1200% over the last 10 years
  • An average driver in the UK will spend over £56,000 on petrol in their lifetime
  • Middle distillates and motor gasoline remain the most in demand oil product groups

Fuels Industry includes the following:

Automotive

Automotive

In automotives, fuels not only are used to generate power through combustion but also need to help protect and maintain the engine parts. Intense tribological research in this area is constantly ongoing.

Aviation

Aviation

With commercial airliners using thousands of kilograms of fuel per hour, optimising its performance in terms of protecting engine parts and efficiency is an area of interest and significant work for tribologists.

Biofuels

Biofuels

Biofuels are an expanding sector in the fuels industry. It is an area of intense tribological study with the goal of creating more environmentally friendly fuels that operate just as effectively as current fuels.

Marine

Marine

Boats and ships operate in wet, often salty, conditions. Tribologists are working hard to develop more environmentally friendly and better performing fuels that can protect engine parts in these unique conditions.

Instruments for the Fuels Industry

Speak to us about our products

Get in touch

Fuels Industry Articles & Papers

Paper

Optimized Production of Fatty Acid Ethyl Esters (FAEE) from Waste Frying Oil by Response Surface Methodology

In Europe, recent regulations on advanced biofuels have prompted a search for new fuel sources and the development of synthesis …

In Europe, recent regulations on advanced biofuels have prompted a search for new fuel sources and the development of synthesis methods meeting the demanding specifications of the sector. However, in developing countries such as Algeria, where a significant stock of frying oil is unused, the use of diesel engines powered with waste-oil-derived biofuels must be explored. In this work, the variables related to the transesterification reaction from this frying oil with ethanol are analyzed using response surface methodology. From this analysis, only the reaction time and temperature have been determined as relevant parameters. In addition, FT-IR analysis has proven a useful tool to analyse the conversion in the transesterification reaction of waste frying oil with ethanol and is cheaper and quicker than GC-FID. This sustainable biofuel (FAEE), mixed with a diesel and pure fuel, has been physically characterized. The mixture of FAEE at 30% by volume with diesel meets the requirements demanded in standard EN 590 and can be classified as winter diesel class D. As a pure biofuel, only its high cold flow temperatures could constitute a drawback for exporting to temperate climates but not for internal consumption.

View abstract

Paper

Hydrogenated Vegetable Oil in Injection Systems: A Tribological Study

The aim of this paper is the assessment of the possible impacts of eco-friendly fuels on injection systems by conducting …

The aim of this paper is the assessment of the possible impacts of eco-friendly fuels on injection systems by conducting tribological model tests. In this regard, lubricity (High-Frequency Reciprocating Rig, HFRR), scuffing load at different temperatures, and oxidation stability of different fuels B7, R33, pure HVO, and commercial-grade HVO diesel fuel have been deeply investigated.
As a result of our study, the HFRR wear scar diameter (WSD) shows no distinct temperature dependence for both fossil-based diesel fuels (B7 and R33). In contrast, vegetable-based ones (pure HVO and commercially available HVO-based fuel) reveal lower lubricity with a trend to higher HFRR value when the temperature is increased. The commercial HVO fuel shows, compared to the pure HVO, better HFRR values at all tested temperatures. Nevertheless, all HFRR values still stay within the limits set by the relevant fuel standards EN 590 and ASTM D975.
For all fuels, the scuffing load clearly depends on the temperature. B7 shows the highest and pure HVO the lowest scuffing load for all tested temperatures. At higher temperatures, commercially available HVO shows a similar, or even better, behavior compared to R33. The results indicate that there is no or only weak correlation between the HFRR and the scuffing load. This correlation obviously varies with fuel grades, additives, and other added substances.
HVO shows excellent oxidation stability due to its pure paraffinic character. Fossil fuels are less stable because aromatic hydrocarbons are much easier to crack than paraffins.
Combustion engines will continue to play an important role until the electrification of transportation is fully established. Our results show that alternative fuels like R33 and HVO represent good alternatives for fossil fuels in diesel engines.

View abstract