Powertrain

Tribology has been an essential part of the development of improved powertrains for decades and - even with a growing shift to electrical vehicles - this continues to be the case today.

The powertrain of a vehicle encompasses every component that is involved in the conversion of power to movement. This is true for any sort of vehicle, from boats to planes and cars to bikes, although each of these will have very different requirements placed on powertrain components. However, one thing all will have in common is that they will consist of many moving parts that are in near-constant contact with other components. It is in these contacts – found in any powertrain – where tribological research has been focused to continually improve and optimise designs.

PCS’ range of instruments are used extensively by industry and academia to achieve this continual improvement. The MTM and ETM are key tools used for this work. Both have independently driven specimens which enable a wide range of contact conditions to be replicated, and together cover an impressive range of contact pressures from close to 0 to 3.5 GPa with standard specimens, and even more with non-standard specimens. This versatility means that researchers can use these instruments to investigate all the different contacts you would find in a whole host of powertrain applications, investigating wear, friction and film build up. The EHD is also extensively used in this area for investigating film thicknesses and traction coefficients of lubricants found in these systems; and the MPR is used to investigate how parts and lubricants will stand up to prolonged use over the years.

As an area of significant power wastage in vehicles, powertrains have always been of interest to tribologists. This interest will only continue to grow, as the frictional losses in the powertrains of electric vehicles are a larger portion of total losses than in internal combustion engines. As such, powertrain research and developments that tribology can bring are only going to become more important in the future.

Powertrain industry research areas include:

  • CV Joints
  • Gearboxes
  • Marine specific lubricants
  • Engine systems
  • Wind turbines
  • Bearings and gears

Powertrain Industry includes the following:

Agriculture

Agriculture

The powertrains in agricultural vehicles must regularly deal with high-stress forces, and be very reliable to prevent down-time. One way this reliability is improved is through the optimisation of tribological contacts.

Automotive

Automotive

Automotive powertrains are an area ripe for continual improvement through tribological study, and this study is important now more than ever as the industry adapts to more complicated systems incorporating electric power.

Aviation

Aviation

With reliability forming the cornerstone of the aviation industry, knowing how components in your powertrain will wear and fail is fundamentally important for knowing when they need to be inspected and replaced.

Machinery

Machinery

The requirements on powertrains in machinery are as varied as the jobs performed by the machines. Every one of them will need lubricating, and choosing the right lubricant comes down to knowing the tribology of the contacts involved.

Marine

Marine

Marine powertrains can be large or small, and some have to deal with as much as 80MW of power and 7.6MNm of torque. These conditions mean lubrication and part protection are critical to the longevity of an engine.

Mining

Mining

Facing constant high loads, harsh and dirty environments, and huge costs associated with downtime, the powertrains in mining vehicles have to be reliable even in the most adverse conditions. Tribological studies helps ensure this is the case.

Trains

Trains

Trains often now work by using a diesel engine to generate power, which is then converted to electrical power, which runs the motors to drive the train. These myriad components and processes are designed with tribology and lubrication in mind.

Wind Turbines

Wind Turbines

Wind power remains one of the most rapidly growing renewable power sources, so the tribological problems found in the powertrain - from the blades to the generator - are the focus of significant research.

Instruments for the Powertrain Industry

Speak to us about our products

Get in touch

Powertrain Industry Articles & Papers

Paper

Investigation of Pure Sliding and Sliding/Rolling Contacts in a DLC/Cast Iron System when Lubricated in Oils Containing MoDTC-Type Friction Modifier

Diamond-like carbon (DLC)/cast iron (CI) systems have been widely investigated due to their important application in engine components such as …

Diamond-like carbon (DLC)/cast iron (CI) systems have been widely investigated due to their important application in engine components such as cylinders, pistons and more specifically for the cam/follower interface. The pure sliding contact of the DLC/CI system has traditionally been the focus of research; consequently less is understood about sliding/rolling contact systems. In addition, the tribological and tribochemical characteristics of the Molybdenum Dialkyl Dithiocarbamate (MoDTC) as a lubricant additive in such sliding/rolling contacts are not fully understood.

In this study, a Mini Traction Machine (MTM) was used to run the experiments using alloy steel balls coated with 15 atomic percent (at. %) hydrogenated DLC (a-C: 15H) rubbing against uncoated cast iron discs. Results showed that the sliding/rolling ratio affects friction, wear and tribochemistry in CI/DLC systems; pure sliding enhances MoDTC activation. MoDTC decomposes to form MoS2, FeMoO4 and not MoO3. In addition, it was observed that MoS2/FeMoO4 ratio depends on test conditions and affects to the friction performance.

View abstract

Paper

Method and Composition for Preventing or Reducing Engine Knock and Pre-ignition in High Compression Spark Ignition Engines

A method for preventing or reducing engine knock or pre-ignition in a high compression spark ignition engine lubricated with a …

A method for preventing or reducing engine knock or pre-ignition in a high compression spark ignition engine lubricated with a lubricating oil by introducing to a combustion chamber of the engine from 0.1 to 5% by volume of the gasoline used a lubricating oil as a formulated oil, said formulated oil having a composition comprising (i) a major amount of a lubricating oil base stock comprising at least 80% by weight of one branched ester having at least 15% of the total carbons in the form of methyl groups, and (ii) a minor amount of at least one ashless amine phosphate antiwear additive. Also provided is a lubricating engine oil for high compression spark ignition engines including (i) a major amount of a lubricating oil base stock comprising at least 80% by weight a trimethylol propane ester of 50:50 mixture of isobutyric acid and 3,5,5-trimethylhexanoic acid and (ii) a minor amount of at least one amine phosphate ashless antiwear additive.

View abstract