Transport

Whether you travel by road, rail, air or sea, you can be sure that tribology has played a part in getting you to your destination safely and efficiently.

Regardless of your mode of transport, tribology will be playing a part in it. Tribology is the study of interacting surfaces in relative motion, which means even the relationship between the sole of a shoe and a path is tribology. For vehicles such as cars and buses, the tribological systems are even more obvious. From the tyre contact with the road, to the brake pads and brake discs, through to bearings, gears and other engine components, tribological research has been conducted on a host of areas. Trains operate with similar tribological issues; they also have engines, brakes, and wheels, but here we are looking at a different scale of load and materials, requiring yet more in-depth research and evaluation. The same is true for boats, planes and bikes.

PCS’ range of instruments have been used by researchers at companies and universities around the world to study the full range of the tribological systems found in transport applications. With PCS’ equipment, researchers can achieve realistic and representative testing of lubricants, coatings and materials at a variety of different conditions, with test parameters and profiles tailored to match what is seen in the field. It is not just one piece of equipment that is used to develop understanding of a tribological system either, often a host of PCS’ instruments are used together to give a better picture of how lubricants, coatings or materials will stand up in the field.

Transport industry research areas include:

  • Boat powertrains
  • Train rail interfaces
  • Electric car powertrain systems
  • Extreme pressure additives for engines
  • Lubricants that can operate in vacuums for space flight

Transport Industry includes the following:

Automotive

Automotive

Many aspects of automotives are tribologically interesting. Extensive research into a host of components such as gearboxes, engines, bearings and brakes is ongoing around the world.

Aviation

Aviation

In aviation safety and reliability are key. Tribological investigation is key to making sure parts in planes and helicopters are appropriately protected by lubricants.

Heavy Duty Vehicles

Heavy Duty Vehicles

Like with cars, tribology research into heavy duty vehicles is ongoing and for this area higher loads are often focused on, for more representative test conditions.

Marine

Marine

Boats and ships operate in wet, often salty, conditions. Tribologists are working hard developing even more environmentally friendly and better performing lubricants for these unique conditions.

Space

Space

Even in space, tribology is still an important consideration. Every moving part on a satellite or space station will have been looked at to make sure they are reliable and appropriately lubricated.

Trains

Trains

Not only are the engines and gearboxes of trains subjects of tribological study, but also the contact between the rails and wheels. Even here tribological research is ongoing to optimise every aspect of train travel.

Instruments for the Transport Industry

Speak to us about our products

Get in touch

Transport Industry Articles & Papers

Paper

The Low Adhesion Problem: The Effect of Environmental Conditions on Adhesion in Rolling-Sliding Contact

Low adhesion problem is one of the major problems for railways all over the world because this phenomenon can occur …

Low adhesion problem is one of the major problems for railways all over the world because this phenomenon can occur anytime and anywhere. To investigate when poor adhesion conditions can be expected in real operation, a ball-on-disc tribometer with a climate chamber was employed to simulate rolling-sliding contact under various environmental conditions. Clean and contaminated discs with leaf extract were used to simulate different surface conditions. Results indicate that contact operating under rolling-sliding conditions is more prone to the occurrence of low adhesion than found by others for pure sliding contact. Very low adhesion (≤0.05) were identified for contaminated and oxidized specimens operating under humid and wet conditions. For clean surfaces, low adhesion (≤0.15) were found under dew conditions.

View abstract

Paper

Influence of Wear Surface Morphology and Phosphorus-Containing Tribofilm on Crack Initiation of Manganese Phosphate Coated Steel under Rolling–Sliding Contact

To improve the rolling–sliding contact fatigue strength of a case-carburized steel, the effect of the wear surface morphologies of manganese …

To improve the rolling–sliding contact fatigue strength of a case-carburized steel, the effect of the wear surface morphologies of manganese phosphate (MnP) coated steel and the growth and removal of phosphorus-containing tribofilm on surface-initiated crack formation was investigated. In order to modify the wear surface morphologies, two types of surface textures (ground and shot blasted) were prepared, followed by the MnP coating process. The tribological properties of the coated steel, tribofilm growth and removal, and surface-initiated crack formation were evaluated using a ball-on-disk tribometer with a rolling–sliding mode. The MnP coating on both the ground and shot blasted steel had nearly the same thickness and surface roughness. However, for the ground surface sample, the interface morphology between the coating and steel substrate was more irregular than the shot blasted surface sample, resulting in a larger number of exposed steel areas with smaller sizes after the MnP was almost worn away on tribological tests. During the running-in period, phosphorus-containing tribofilm growth and removal on the smaller exposed steel areas were observed. The surface-initiated crack formation on the smaller exposed steel areas was suppressed compared with larger exposed steel areas.

View abstract