Transport

Whether you travel by road, rail, air or sea, you can be sure that tribology has played a part in getting you to your destination safely and efficiently.

Regardless of your mode of transport, tribology will be playing a part in it. Tribology is the study of interacting surfaces in relative motion, which means even the relationship between the sole of a shoe and a path is tribology. For vehicles such as cars and buses, the tribological systems are even more obvious. From the tyre contact with the road, to the brake pads and brake discs, through to bearings, gears and other engine components, tribological research has been conducted on a host of areas. Trains operate with similar tribological issues; they also have engines, brakes, and wheels, but here we are looking at a different scale of load and materials, requiring yet more in-depth research and evaluation. The same is true for boats, planes and bikes.

PCS’ range of instruments have been used by researchers at companies and universities around the world to study the full range of the tribological systems found in transport applications. With PCS’ equipment, researchers can achieve realistic and representative testing of lubricants, coatings and materials at a variety of different conditions, with test parameters and profiles tailored to match what is seen in the field. It is not just one piece of equipment that is used to develop understanding of a tribological system either, often a host of PCS’ instruments are used together to give a better picture of how lubricants, coatings or materials will stand up in the field.

Transport industry research areas include:

  • Boat powertrains
  • Train rail interfaces
  • Electric car powertrain systems
  • Extreme pressure additives for engines
  • Lubricants that can operate in vacuums for space flight

Transport Industry includes the following:

Automotive

Automotive

Many aspects of automotives are tribologically interesting. Extensive research into a host of components such as gearboxes, engines, bearings and brakes is ongoing around the world.

Aviation

Aviation

In aviation safety and reliability are key. Tribological investigation is key to making sure parts in planes and helicopters are appropriately protected by lubricants.

Heavy Duty Vehicles

Heavy Duty Vehicles

Like with cars, tribology research into heavy duty vehicles is ongoing and for this area higher loads are often focused on, for more representative test conditions.

Marine

Marine

Boats and ships operate in wet, often salty, conditions. Tribologists are working hard developing even more environmentally friendly and better performing lubricants for these unique conditions.

Space

Space

Even in space, tribology is still an important consideration. Every moving part on a satellite or space station will have been looked at to make sure they are reliable and appropriately lubricated.

Trains

Trains

Not only are the engines and gearboxes of trains subjects of tribological study, but also the contact between the rails and wheels. Even here tribological research is ongoing to optimise every aspect of train travel.

Instruments for the Transport Industry

Speak to us about our products

Get in touch

Transport Industry Articles & Papers

Paper

Biomimetic Water-Based Lubricant Development: Nanoencapsulation with Liposomes

The replacement of traditional mineral oil lubricants with water-based bio-compatible fluids has long been a desirable, if unrealised, ambition in …

The replacement of traditional mineral oil lubricants with water-based bio-compatible fluids has long been a desirable, if unrealised, ambition in many applications. This is particularly relevant in marine-based energy generation systems, where oil-based lubricants create a high risk of environmental pollution. The use of bio-lubricants has been explored in several previous studies, however no significant technological advances have been achieved. Most of the work has focused on traditional lubrication mechanisms, with bio-molecules being employed to form an adsorbed surface film which reduces friction. However, due to their inherent biological, thermal and/or oxidative instability, bio-molecules are unsuited to long-term industrial applications. The alternative approach is to use stable, bio-friendly molecules, designed to exploit the lubrication mechanisms found in nature. These mechanisms have evolved to be far more diverse than those found in traditional “mineral oil” tribology and are, as yet, poorly understood.

View abstract

Paper

The Effect of Top of Rail Lubricant Composition on Adhesion and Rheological Behaviour

The effect of top of rail lubricant composition on adhesion has been investigated using a laboratory ball-on-disc tribometer. Rheological properties were analysed …

The effect of top of rail lubricant composition on adhesion has been investigated using a laboratory ball-on-disc tribometer. Rheological properties were analysed using viscosimeter and high pressure torsion device. As a base medium, a biodegradable ester oil with bentonite thickener was selected. Added particles for friction modification were aluminium oxide, zinc oxide, copper sulfide and solid lubricants molybdenum disulfide and graphite. The effect of these components in the base medium on adhesion was evaluated. It was found that the most dominant component was the solid particles for friction modification. Based on the results, top of rail lubricant substances were prepared and tested. The best performing substances provided the optimal level of adhesion. These substances also showed resilience to overdosing, which caused commercial products to provide very low adhesion conditions. The rheological investigation confirmed the very low adhesion is controlled by elastohydrodynamic regime while the stable values are a result of transition to boundary lubrication.

View abstract