Micro- to Nano- and from Surface to Bulk: Influence of Halogen-Free Ionic Liquid Architecture and Dissociation on Green Oil Lubricity
Four nonhalogenated ionic liquids (ILs) based on the same phosphonium cation are investigated in terms of the anion suitability for enhancing the lubricity of a biodegradable oil. For all test conditions, typical for industrial machine components, the lubrication is shown to be governed by nonsacrificial films formed by the physisorption of ionic species on the tribo-surfaces. The anionic structure appears to have an important role in the formation of friction modifying films. The orthoborate ILs exhibit the formation of robust ionic boundary films, resulting in reduced friction and better wear protection. On the contrary, the surface adsorption of phosphinate and phosphate ILs appears to antagonistically disrupt the intrinsic lubrication properties of the biodegradable oil, resulting in high friction and wear. Through additional investigations, it is postulated that the higher dissociation of orthoborate ILs in the biodegradable oil allows the formation of hierarchical and electrostatically overscreened layer structures with long-range order, whereas the ILs with phosphate and phosphinate anions exhibit low dissociation in biodegradable oil, possibly due to the ion pairs being surrounded by a hydrocarbon halo, which presumably results in weak adsorption to form a mixed interfacial layer with no long-range order.